
Chapitre 13

Thermodynamique

des milieux continus

13.1 Dérivée temporelle du volume

Établir la dérivée temporelle du volume V̇ (t) d’un milieu continu
en le divisant en bôıtes cubiques infinitésimales et déformables centrées autour
de points écrits en coordonnées cartésiennes comme (x, y, z). Les coordonnées
cartésiennes x (t), y (t) et z (t) des centres des bôıtes infinitésimales sont im-
plicitement des fonctions du temps t car ils peuvent se déplacer lors de la
déformation du milieu continu. La variation de volume du milieu continu est
la somme des variations de volume des bôıtes. Ces bôıtes ont des faces carrées
orthogonales aux axes de coordonnées cartésiennes et les dimensions de leurs
arrêtes sont dx, dy et dz. Le champ de vitesse est v (x, y, z).

13.1 Solution

Le champ vectoriel vitesse au centre d’une bôıte infinitésimale est représenté
en coordonnées cartésiennes comme,

v (x, y, z) =
(
vx (x, y, z) , vy (x, y, z) , vz (x, y, z)

)
D’abord, on considère les faces d’une bôıte cubique qui sont orthogonales à
l’axe x. Le déplacement de la face d’aire infinitésimale dy dz située en position
x− dx/2 est déterminé par la vitesse vx (x− dx/2, y, z) et le décplacement de
la face d’aire infinitésimale dy dz située en position x+ dx/2 est déterminé par
la vitesse vx (x+ dx/2, y, z). La variation infinitésimale du volume dVx de la
bôıte durant un intervalle de temps infinitésimal dt est due au déplacement des
deux faces. Ainsi, la variation infinitésimale du volume s’écrit,

dVx (x, y, z) = vx

(
x+

dx

2
, y, z

)
dy dz dt− vx

(
x− dx

2
, y, z

)
dy dz dt

Les signes dans le membre de droite de cette équation sont dus au fait que la
vitesse vx (x+ dx/2, y, z) de la face avec une coordonnée d’abscisse x maximale
est positive et la vitesse vx (x− dx/2, y, z) avec une coordonnée d’abscisse x



2 Thermodynamique des milieux continus

minimale est négative pour un accroissement du volume de la bôıte. Les déve-
loppements limités au premier ordre des vitesses vx (x± dx/2, y, z) sont donnés
par,

vx

(
x± dx

2
, y, z

)
= vx (x, y, z) ± 1

2

∂vx (x, y, z)

∂x
dx

Compte tenu de ce résultat, l’expression pour la variation infinitésimale du
volume devient,

dVx (x, y, z) =

(
vx (x, y, z) +

1

2

∂vx (x, y, z)

∂x
dx

)
dy dz dt

−
(
vx (x, y, z) − 1

2

∂vx (x, y, z)

∂x
dx

)
dy dz dt

et se réduit à,

dVx (x, y, z) =
∂vx (x, y, z)

∂x
dx dy dz dt

De manière similaire, la variation infinitésimale du volume dVy de la bôıte
durant un intervalle de temps infinitésimal dt, due au déplacement des faces
d’aire infinitésimale dz dx situées en position y + dy/2 et y − dy/2, s’écrit,

dVy (x, y, z) =
∂vy (x, y, z)

∂y
dx dy dz dt

et la variation infinitésimale du volume dVz de la bôıte durant un intervalle de
temps infinitésimal dt, due au déplacement des faces d’aire infinitésimale dx dy
situées en position z + dz/2 et z − dz/2, s’écrit,

dVz (x, y, z) =
∂vz (x, y, z)

∂z
dx dy dz dt

La variation infinitésimale du volume de la bôıte s’écrit,

dV (x, y, z) = dVx (x, y, z) + dVy (x, y, z) + dVz (x, y, z)

=

(
∂vx (x, y, z)

∂x
+
∂vy (x, y, z)

∂y
+
∂vz (x, y, z)

∂z

)
dx dy dz dt

Compte tenu de la divergence du champ de vitesse,

∇ · v (x, y, z) =
∂vx (x, y, z)

∂x
+
∂vy (x, y, z)

∂y
+
∂vz (x, y, z)

∂z

la variation infinitésimale du volume de la bôıte devient,

dV (x, y, z) = ∇ · v (x, y, z) dx dy dz dt

La dérivée temporelle du volume du milieu continu est l’intégrale sur le volume
du système de la divergence de la vitesse,

V̇ (x, y, z) =

∫
V (t)

∇ · v (x, y, z) dx dy dz
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13.2 Viscosité volumique et loi de Stokes

Le frottement scalaire interne τ est lié à la viscosité volumique η par
la loi de Stokes,

τ = η∇ · v

1) Expliquer pourquoi le frottement scalaire interne peut s’écrire,

τ = p− pext

2) Compte tenu de la loi de Stokes (3.52) obtenue au chapitre 3,

V̇ =
1

ξ
(p− pext)

exprimer le coefficient de frottement thermoélastique ξ en termes de la
viscosité volumique η.

13.2 Solution

1) Au chapitre 3, on a montré que l’irréversibilité liée au mouvement d’une pa-

roi séparant deux sous-systèmes est due à leur différence de pression. Étant
donné que le frottement interne τ a la même dimension que la pression
p, le frottement mécanique scalaire τ entre un système et l’environnement
doit être la différence de pression p− pext entre le système et l’environne-
ment à une constante près qui peut être choisie comme l’unité sans perte
de généralité.

2) L’intégration du frottement scalaire sur le volume du système s’écrit,

τ

∫
V

dV = (p− pext)

∫
V

dV = η

∫
V

dV ∇ · v

Compte tenu de la définition (11.102) de la dérivée temporelle du volume,

V̇ =

∫
V

dV (∇ · v)

la loi de Stokes est écrite de la manière suivante,

V̇ =
V

η
(p− pext)

Par conséquent, le coefficient de frottement thermoélastique est la viscosité
volumique par unité de volume,

ξ =
η

V
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13.3 Equation de continuité de la masse

Établir l’équation de continuité pour la masse en déterminant la va-
riation de masse à l’intérieur d’une bôıte cubique infinitésimale située centrée
au point (x, y, z). La bôıte a des faces carrées orthogonales aux axes de coor-
données cartésiennes et les dimensions de ses arêtes sont dx, dy et dz. Le champ
de vitesse est v (x, y, z).

13.3 Solution

Le champ vectoriel vitesse au centre d’une bôıte infinitésimale est représenté
en coordonnées cartésiennes comme,

v (x, y, z) =
(
vx (x, y, z) , vy (x, y, z) , vz (x, y, z)

)
D’abord, on considère les faces d’une bôıte cubique qui sont orthogonales à
l’axe x. Le débit de masse à travers la face située en position x − dx/2 est
déterminé par la vitesse vx (x− dx/2, y, z) et le débit de masse à travers la
face située en position x+ dx/2 est déterminé par la vitesse vx (x+ dx/2, y, z).
La variation infinitésimale de la masse dMx à l’intérieur de la bôıte durant un
intervalle de temps infinitésimal dt est due au débit de masse à travers ces deux
faces. Ainsi, la variation infinitésimale de masse s’écrit,

dMx (x, y, z) = m

(
x− dx

2
, y, z

)
vx

(
x− dx

2
, y, z

)
dy dz dt

− m

(
x+

dx

2
, y, z

)
vx

(
x+

dx

2
, y, z

)
dy dz dt

où m (x, y, z) est la densité de masse. Les signes dans le membre de droite de
cette équation sont dus au fait que la vitesse vx (x− dx/2, y, z) est positive
pour un débit entrant de masse et que la vitesse vx (x+ dx/2, y, z) est positive
pour un débit sortant de masse. Les développements limités au premier ordre
des densités de masse m (x± dx/2, y, z) et des vitesses vx (x± dx/2, y, z) sont
donnés par,

m

(
x± dx

2
, y, z

)
= m (x, y, z) ± 1

2
∂xm (x, y, z) dx

vx

(
x± dx

2
, y, z

)
= vx (x, y, z) ± 1

2
∂x vx (x, y, z) dx

Compte tenu de ce résultat, l’expression pour la variation infinitésimale de
masse devient,

dMx (x, y, z) =(
m (x, y, z) − 1

2

∂m (x, y, z)

∂x
dx

)(
vx (x, y, z) − 1

2

∂vx (x, y, z)

∂x
dx

)
dy dz dt

−
(
m (x, y, z) +

1

2

∂m (x, y, z)

∂x
dx

)(
vx (x, y, z) +

1

2

∂vx (x, y, z)

∂x
dx

)
dy dz dt
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et se réduit à,

dMx (x, y, z) = −
(
vx (x, y, z)

∂m (x, y, z)

∂x

)
dx dy dz dt

+

(
m (x, y, z)

∂vx (x, y, z)

∂x

)
dx dy dz dt

De manière similaire, la variation infinitésimale de masse dMy (x, y, z) à l’inté-
rieur de la bôıte durant un intervalle de temps infinitésimal dt, dû au débit de
masse à travers les deux faces orthogonales à l’axe y, est donnée par,

dMy (x, y, z) = −
(
vy (x, y, z)

∂m (x, y, z)

∂y

)
dx dy dz dt

+

(
m (x, y, z)

∂vy (x, y, z)

∂y

)
dx dy dz dt

et la variation infinitésimale de masse dMz (x, y, z) à l’intérieur de la bôıte
durant un intervalle de temps infinitésimal dt, dû au débit de masse à travers
les deux faces orthogonales à l’axe z, s’écrit,

dMz (x, y, z) = −
(
vz (x, y, z)

∂m (x, y, z)

∂z

)
dx dy dz dt

+

(
m (x, y, z)

∂vz (x, y, z)

∂z

)
dx dy dz dt

La dérivée partielle de la densité de masse par rapport au temps est définie
comme,

∂m (x, y, z)

∂t
=
dMx (x, y, z) + dMy (x, y, z) + dMz (x, y, z)

dx dy dz dt

ce qui implique que,

∂m (x, y, z)

∂t
= −

(
vx (x, y, z)

∂

∂x
+ vy (x, y, z)

∂

∂y
+ vz (x, y, z)

∂

∂z

)
m (x, y, z)

− m (x, y, z)

(
∂vx (x, y, z)

∂x
+
∂vy (x, y, z)

∂y
+
∂vz (x, y, z)

∂z

)
ou en notation allégée,

∂m

∂t
= −

(
vx

∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z

)
m− m

(
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

)
À l’aide des relations vectorielles,

v ·∇ = vx
∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z

∇ · v =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z
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la dérivée partielle de la densité de masse par rapport au temps est mise sous
la forme suivante,

∂m

∂t
= − (v ·∇)m− (∇ · v)m

Ainsi, on obtient l’équation de continuité pour la masse,

∂tm+ ∇ · (mv) = 0

13.4 Fluide dans un récipient accéléré

Un récipient avec des parois verticales et une base rectangulaire est
soumis à une accélération constante a orientée vers la droite. On suppose que
le liquide de densité de masse m à l’intérieur du récipient est à l’équilibre par
rapport au récipient et que les frottement sont négligeables.

a

a

x

z

p0

h

O

Fig. 13.1 Un récipient rempli de liquide est soumis à une accélération constante. Dans un
état stationnaire, la surface de l’eau est inclinée vers l’arrière avec un angle d’inclinaison
constant α.

1) Déterminer la pression dans le liquide comme fonction de la coordonnée
horizontale x et de la coordonnée verticale z.

2) Montrer que la surface du liquide est inclinée vers l’arrière avec un angle
d’inclinaison constant α (fig. 13.1). Déterminer l’angle α.

13.4 Solution

1) En absence de frottement visqueux, la seule densité de force extérieure
exercée sur un volume infinitésimal de liquide est son poids spécifique,∑

f ext = m g

Étant donné qu’il n’y a pas de cisaillement et de frottement, c’est-à-dire que
τ = 0, d’après l’équation (11.93), la divergence du tenseur des contraintes
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se réduit à l’opposé du gradient de pression,

∇ · τ = −∇ p

Ainsi, la 2e loi de Newton (11.42) peut être mise sous la forme,

∇ p = −ma+m g

Le gradient de pression ∇ p est exprimé en coordonnées cartésiennes
comme,

∇ p =
∂p

∂x
x̂+

∂p

∂z
ẑ

L’accélération a et le champ gravitationnel g s’écrivent,

a = a x̂ et g = − g ẑ

ce qui implique que,

∂p

∂x
= −ma et

∂p

∂z
= −mg

La différentielle de la pression peut être mise sous la forme,

dp (x, z) =
∂p

∂x
dx+

∂p

∂z
dz = −madx− mg dz

La pression p (x, z) est obtenue par intégration sur les coordonnées spatiales
x et z,

p (x, z) = −max− mg z + p (0, 0)

où la constante d’intégration p (0, 0) correspond à la pression à l’origine O
du référentiel. La pression p (0, 0) est la somme de la pression atmosphérique
p0 et de la pression hydrostatique d’une colonne de liquide mg h,

p (0, 0) = p0 +mg h

Ainsi, la pression au point (x, z) à l’intérieur du liquide s’écrit,

p (x, z) = −max− mg z + p0 +mg h

2) L’équation précédente peut être mise sous la forme,

z = − a

g
x+ h− p− p0

mg

À la surface du liquide, la pression est simplement la pression atmosphé-
rique, c’est-à-dire p = p0. Ainsi, la relation précédente se réduit à,

z = − a

g
x+ h (à la surface)

ce qui correspond à une droite avec une pente négative étant donné que
a, g et h sont des constantes positives. Ainsi, l’angle d’inclinaison α est
déterminé en calculant le rapport des coordonnées,

tanα = − z

x
=
a

g
ainsi α = arctan

(
a

g

)


