CHAPITRE 13

Thermodynamique

des milieux continus

13.1 Dérivée temporelle du volume

Yol Etablir la dérivée temporelle du volume V (¢) d’un milieu continu
en le divisant en boites cubiques infinitésimales et déformables centrées autour
de points écrits en coordonnées cartésiennes comme (z,y, z). Les coordonnées
cartésiennes x (t), y (t) et z(t) des centres des boites infinitésimales sont im-
plicitement des fonctions du temps ¢ car ils peuvent se déplacer lors de la
déformation du milieu continu. La variation de volume du milieu continu est
la somme des variations de volume des boites. Ces boites ont des faces carrées
orthogonales aux axes de coordonnées cartésiennes et les dimensions de leurs
arrétes sont dx, dy et dz. Le champ de vitesse est v (z,y, 2).

Solution

Le champ vectoriel vitesse au centre d’une boite infinitésimale est représenté
en coordonnées cartésiennes comme,

v(,y,2) = (v2 (@.9,2) 0y (@,5,2) 0 (0,9,2) )

D’abord, on considere les faces d'une boite cubique qui sont orthogonales a
I'axe x. Le déplacement de la face d’aire infinitésimale dy dz située en position
x — dx/2 est déterminé par la vitesse v, (z — dx/2,y, 2) et le décplacement de
la face d’aire infinitésimale dy dz située en position = + dz/2 est déterminé par
la vitesse v, (x + dx/2,y, z). La variation infinitésimale du volume dV, de la
boite durant un intervalle de temps infinitésimal dt est due au déplacement des
deux faces. Ainsi, la variation infinitésimale du volume s’écrit,

d d
AV (x,y,2) = vy <x—|— ;,y,z) dydzdt — v, <3:— ;,y,z) dy dz dt

Les signes dans le membre de droite de cette équation sont dus au fait que la
vitesse v, (¢ + dx/2,y, z) de la face avec une coordonnée d’abscisse  maximale
est positive et la vitesse v, (z — dx/2,y, z) avec une coordonnée d’abscisse x
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minimale est négative pour un accroissement du volume de la boite. Les déve-
loppements limités au premier ordre des vitesses v, (x &+ dz/2,y, z) sont donnés
par,
dx 1 Ov, (2,9, 2)
v leEt =, y,2 ) =v, (z,y,2) £ = — 2" dg
Compte tenu de ce résultat, I’expression pour la variation infinitésimale du
volume devient,

1 v, (z,y, 2)

dv (z,y,2) = (vz (z,y,2) + =

5 o da:) dy dz dt

— (fuaC (z,y,2) — % W d:v) dydzdt

et se réduit a,
AV, (z,y,2) = W da dy dz dt
X

De maniere similaire, la variation infinitésimale du volume dV,, de la boite
durant un intervalle de temps infinitésimal dt, due au déplacement des faces
d’aire infinitésimale dz dx situées en position y + dy/2 et y — dy/2, s'écrit,

v, (z,y,z) = ‘9%(;"2;3/’2) dr dy dz dt

et la variation infinitésimale du volume dV, de la boite durant un intervalle de
temps infinitésimal dt, due au déplacement des faces d’aire infinitésimale dx dy
situées en position z + dz/2 et z — dz/2, s’écrit,

a z ) )
AV, (x,y,2) = % dx dy dz dt

La variation infinitésimale du volume de la boite s’écrit,
dV (z,y,2) = dVy (2,y,2) + dV (z,y,2) + dV; (z,y, 2)

_ avm (x,y,z) + avy (:Caywz) + avz (I’y’z) dxdydzdt
Ox dy 9z

Compte tenu de la divergence du champ de vitesse,

oy (z,y, 2 v, (x,y, 2 ov, (x,y, 2z

la variation infinitésimale du volume de la boite devient,
AV (z,y,2) =V -v(x,y,2)dedydzdt

La dérivée temporelle du volume du milieu continu est I'intégrale sur le volume
du systeme de la divergence de la vitesse,

V(x,y,z): V v (z,y,2z)dxdydz
v(t)
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13.2 Viscosité volumique et loi de Stokes

Yo ®  Le frottement scalaire interne 7 est lié & la viscosité volumique 7 par
la loi de Stokes,

T=nV .0

1) Expliquer pourquoi le frottement scalaire interne peut s’écrire,

T =D = Pext
2) Compte tenu de la loi de Stokes (3.52) obtenue au chapitre 3,

1

VZE@—mm

exprimer le coefficient de frottement thermoélastique £ en termes de la
viscosité volumique 7.

Solution

1) Au chapitre 3, on a montré que l'irréversibilité liée au mouvement d’une pa-
roi séparant deux sous-systemes est due a leur différence de pression. Etant
donné que le frottement interne 7 a la méme dimension que la pression
p, le frottement mécanique scalaire 7 entre un systeme et ’environnement
doit étre la différence de pression p — peyt entre le systéme et I’environne-
ment a une constante pres qui peut étre choisie comme 'unité sans perte
de généralité.

2) L’intégration du frottement scalaire sur le volume du systeéme s’écrit,

T/dV:(pfpcxt)/dV:n/dVV-'v
1% 1% 1%

Compte tenu de la définition (11.102) de la dérivée temporelle du volume,

V:/VdV (V-v)

la loi de Stokes est écrite de la maniere suivante,

. V
V=— (p — D xt)
77 €
Par conséquent, le coefficient de frottement thermoélastique est la viscosité
volumique par unité de volume,

_1
g_V
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13.3 Equation de continuité de la masse

Yok Etablir I'équation de continuité pour la masse en déterminant la va-
riation de masse a l'intérieur d’une boite cubique infinitésimale située centrée
au point (x,y, z). La boite a des faces carrées orthogonales aux axes de coor-
données cartésiennes et les dimensions de ses arétes sont dzx, dy et dz. Le champ
de vitesse est v (z,y, 2).

Solution

Le champ vectoriel vitesse au centre d’une boite infinitésimale est représenté
en coordonnées cartésiennes comme,

0 (@,0,2) = (02 (2,9,2) 0, (@,9,2) 02 (2,9, 2) )

D’abord, on considere les faces d'une boite cubique qui sont orthogonales a
laxe z. Le débit de masse a travers la face située en position & — da/2 est
déterminé par la vitesse v, (z — dz/2,y,2) et le débit de masse & travers la
face située en position z + dz/2 est déterminé par la vitesse v, (z + dz/2,y, z).
La variation infinitésimale de la masse dM, a l'intérieur de la boite durant un
intervalle de temps infinitésimal dt est due au débit de masse & travers ces deux
faces. Ainsi, la variation infinitésimale de masse s’écrit,

d d
dM, (z,y,z) =m <x— ;,y,z> Vg <x— ;,y,z> dydzdt

d dx
— m(z+;,y,z> Vg <x+ 5 Y% )dydzdt

ou m (z,y, z) est la densité de masse. Les signes dans le membre de droite de
cette équation sont dus au fait que la vitesse v, (x — dx/2,y,z) est positive
pour un débit entrant de masse et que la vitesse v, (x + dx/2,y, z) est positive
pour un débit sortant de masse. Les développements limités au premier ordre
des densités de masse m (x &+ dx/2,y, z) et des vitesses v, (z + dx/2,y, z) sont
donnés par,

d 1
m(m:l:;,y,z) :m(x,y,z):tgamm(x,y,z) dz

d 1
Vg (xi;y2> =y (x,y,Z)igaxvx (v,y,2) dx

Compte tenu de ce résultat, ’expression pour la variation infinitésimale de
masse devient,

dMZE (x’y72) =
1 Om (z y7 1 O, (2,9, 2)
(m(a:,y,z)— SR e > ( (z,y,2 ZTdaz dy dz dt
1 3 (w Y, 2) 1 vy (2,y, 2)
(m(m,y,z)—i—Q o dz ) | vg (z,y, )+§Tdm dy dz dt
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et se réduit a,
dM, (z,y,2) = — (vz (2,9, 2) W) dz dy dz dt
x

+ (m (z,y,2) W) dx dydz dt

De maniére similaire, la variation infinitésimale de masse dM,, (z,y, z) & I'inté-
rieur de la boite durant un intervalle de temps infinitésimal dt, di au débit de
masse a travers les deux faces orthogonales & ’axe y, est donnée par,

dMy (x7y?Z) = - (vy (x7yaz) W) dxdydzdt

+ (m (z,y,2) W) dz dy dz dt

et la variation infinitésimale de masse dM, (x,y,z) & lintérieur de la boite
durant un intervalle de temps infinitésimal dt, dit au débit de masse a travers

les deux faces orthogonales a l'axe z, s’écrit,
0
dMZ (JU, Y, Z) = - (UZ (JC, Y, Z) W) dl: dy dZ dt

+ (m (z,y,2) W) dx dy dz dt

La dérivée partielle de la densité de masse par rapport au temps est définie

comme,
dM, (x,y,z) + dM, (x,y,2) + dM, (z,y, 2)

om (z,y,2) _
N drdydzdt

ot

ce qui implique que,
om(x,y,z) 1o} 0
T = — | Uz (1',%2’) 61’ +Uy (SC,y,Z) ay +vz
0vy (z,y,2)  Ovy(z,y,2)  Ov, (2,y,2)
m (@Y, 7) ( Ox + Oy + Oz

(520:2) 5 ) m 3.2

ou en notation allégée,

v,

aﬁ__ v 24—’0 Q—FU 2 m—m 8vx+%+
ot Toxr Yoy 7oz or Oy Oz

A T'aide des relations vectorielles,
0 0 0
v~V—vw—ax +vy—ay + v, 2
ov, Ovy Ov,
Vo= Yoy T e
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la dérivée partielle de la densité de masse par rapport au temps est mise sous
la forme suivante,

om
ot

Ainsi, on obtient I’équation de continuité pour la masse,

=—(v-V)m—(V-v)m

om+V-(mv)=0

13.4 Fluide dans un récipient accéléré

Yo% Un récipient avec des parois verticales et une base rectangulaire est
soumis a une accélération constante a orientée vers la droite. On suppose que
le liquide de densité de masse m a l'intérieur du récipient est a ’équilibre par
rapport au récipient et que les frottement sont négligeables.

z
A
h
a
|
0 |

Fig. 13.1 Un récipient rempli de liquide est soumis & une accélération constante. Dans un
état stationnaire, la surface de ’eau est inclinée vers ’arriere avec un angle d’inclinaison
constant a.

1) Déterminer la pression dans le liquide comme fonction de la coordonnée
horizontale x et de la coordonnée verticale z.

2) Montrer que la surface du liquide est inclinée vers l'arriere avec un angle
d’inclinaison constant « (fig. 13.1). Déterminer I'angle a.

Solution

1) En absence de frottement visqueux, la seule densité de force extérieure
exercée sur un volume infinitésimal de liquide est son poids spécifique,

> < =mg

Etant donné qu’il n’y a pas de cisaillement et de frottement, c’est-a-dire que
7 = 0, d’apres ’équation (11.93), la divergence du tenseur des contraintes
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se réduit a 'opposé du gradient de pression,
V-r=-Vp
Ainsi, la 2° loi de Newton (11.42) peut étre mise sous la forme,
Vp=—-ma+mg

Le gradient de pression Vp est exprimé en coordonnées cartésiennes
comme,

L’accélération a et le champ gravitationnel g s’écrivent,
a=al et g=—g2

ce qui implique que,

op ot Ip
— =—ma —=-m
oz 0z g
La différentielle de la pression peut étre mise sous la forme,
0 0
dp(z,z) = 8—idm+ 8—‘Zdz =—madx — mgdz

La pression p (x, z) est obtenue par intégration sur les coordonnées spatiales
T et z,
p(x,2)=—max— mgz+p(0,0)

ol la constante d’intégration p (0, 0) correspond & la pression & lorigine O
du référentiel. La pression p (0, 0) est la somme de la pression atmosphérique
po et de la pression hydrostatique d’une colonne de liquide m g h,

p(0,0)=po+mgh
Ainsi, la pression au point (z,z) & Pintérieur du liquide s’écrit,
p(z,z)=—max— mgz+py+mgh
L’équation précédente peut étre mise sous la forme,

p=m

a
z=——-x+h-—
g mg

A la surface du liquide, la pression est simplement la pression atmosphé-
rique, c’est-a-dire p = pg. Ainsi, la relation précédente se réduit a,

c=—2a4h (a la surface)

ce qui correspond & une droite avec une pente négative étant donné que
a, g et h sont des constantes positives. Ainsi, I'angle d’inclinaison « est
déterminé en calculant le rapport des coordonnées,

z a .. a
tana = — — = — alnsi o = arctan | —
z g g



